If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+134x+15=0
a = 16; b = 134; c = +15;
Δ = b2-4ac
Δ = 1342-4·16·15
Δ = 16996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16996}=\sqrt{4*4249}=\sqrt{4}*\sqrt{4249}=2\sqrt{4249}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(134)-2\sqrt{4249}}{2*16}=\frac{-134-2\sqrt{4249}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(134)+2\sqrt{4249}}{2*16}=\frac{-134+2\sqrt{4249}}{32} $
| 3(6k-2)=30 | | 3b−5=7 | | Y=8-5x/x | | 3/2=x/2.5 | | 2x+2(750)=3000 | | 5x-6(2x)=0 | | -1d=d+4 | | 200x²+1728x+4000=0 | | (D^3+5D^2+3D-9)y=0 | | 2/12+2.5=x | | X^+8=-6x | | 2^(x+1)+2(x)+2(x+1)=7 | | 3^(4x)-5.9^(x)-36=0 | | 3x/2+5=5x-1 | | x²-17x-120=0 | | -1,1x^2+2,2-0.3=0 | | (5x-10)+(x+45)+(65-2x)=180 | | 3^(3x-4)=9^(x-3) | | 2(3x-4)+5=3(x+1) | | 9y−2+y= | | 11^(-8x)=7^(8-x) | | 8i+20=180 | | 7x-2=59 | | 13-(a+3)=7 | | x(x+5)=89 | | 13-(a-3)=7 | | A=11.h(16+10) | | (4x-5)/(2x+3)=0 | | x(1-3)=3x+1 | | 〖(x-5)〗^2=16 | | 0.12x+0.42x=0 | | (4x-3)/2=(9x-6)/8+11/4 |